A basis-invariant version of attribution

Jacob Hilton
March 14, 2024

Let X be a random vector taking values in R™, and let f : R®™ — R be any differentiable
function. For a central example, X could be the activations of a neural network at some
layer, and f could be some scalar function of the network’s output, such as a particular
component of the output, or the loss, or something else.

We would like to determine which directions of variance in X are “important” to the
function f. Intuitively, the importance of a direction depends on both how much variance
there is in that direction, and on how much each unit of variance affects the output of f.
This idea is reflected in wide variety of attribution methods, such as integrated gradients
[Sundararajan et all 2017]. However, such methods generally rely on a choice of basis,
and so a further dimensionality reduction step such as non-negative matrix factorization is
typically applied to the results of the attribution method to obtain the important directions
[Olah et al.l |2018| Hilton et al.l |2020].

Here we present an alternative method of finding the directions of variance in X that
are important to f that does not rely on a choice of basis. The method has several at-
tractive theoretical properties: it optimizes an intuitive objective, it is invariant to linear
reparameterizations, and it generalizes principal component analysis (PCA) in a natural
way. Furthermore, it is straightforward to apply in practice: it has the same time com-
plexity as PCA (up to a small constant factor), it is numerically stable as long as there are
actually important directions to be found, and it can be implemented in about 10 lines of
code.

1 Derivation of the method

The essential idea is to find an n x n projection matrix P of rank at most k, i.e. satisfying
P? = P with at most a k-dimensional image, to minimize

E[(f(X) = f (m+P (X =)y,

where p is the mean of X. The intuition behind this objective is that after projecting onto
the important directions of variance, our estimate of f should be as accurate as possible.
Despite the apparent generality of this objective, it turns out that it can be approximately
solved in a straightforward way using singular value decomposition.

To see this, take a first-order Taylor expansion of f about X to approximate the objective

B|(VSO0T (=P -)|

—E [tr (1= P)(X =) (X =)" (1 = PT) v/ (X)V/ (X)T)]
~tr(I-P)=(I-P")1),

where
S =FE [(X —) (X - u)T] and II:=E [Vf(X)Vf(X)T} ,

and we have approximated X and Vf (X) as independent in the last step. Note that X is
the covariance matrix of X and IT is the “uncentered covariance matrix” of V f (X).

Since X and IT are positive semi-definite, we may write them as ¥ = AAT and II =
GGT (these letters are intended to be reminiscent of “activation” and “gradient”). The
approximate objective can then be written as

leTa - GTPAl.

where ||.|| denotes the Frobenius norm. In other words, we are being asked to approxi-
mate GTA by the rank-k matrix GTPA. But by the Eckart-Young-Mirsky theorem, the
best rank-k approximation to GTA of any form is obtained by taking the singular value
decomposition of GT A,

GTA=USVT,

zeroing out all but the top k singular values to obtain Sk, and using the approximation
US,VT. Hence we can take
P=AVSUTGT,

where T denotes the Moore-Penrose pseudoinverse (i.e., we take the reciprocal of all re-
maining non-zero singular values), and it is straightforward to check that this satisfies
GTPA =US,VT and that P2 = P, i.e., P is indeed a projection.

Our choice of P is not the unique solution to this optimization problem. However, if
there are no ties for the rth largest singular value, then the matrix ITP3 is unique. Hence
the image of P is unique if IT is invertible and the kernel of P is unique if X is invertible.
Furthermore, if there are no ties for the rth largest singular value, then our choice of P is
the unique solution that is continuous as a function of 3 and IT in a local neighborhoodﬂ

2 Practical algorithm

The above derivation suggests the following algorithm to find the n X n projection matrix
P:

1. Collect p independent samples X (M), ..., X®) and compute V f (X(l)) yoo s Vf (X(p)).

1To see this, note that if there are no ties for the rth largest singular value, then IIPX is unique, and the
selection of the largest r singular values is continuous. The eigenvalue and singular value decompositions
can be made continuous in a local neighborhood, and the rest of the algorithm is continuous, and so the
entire algorithm can be made continuous in a local neighborhood. Hence our choice of P can be obtained
as the limit of the algorithm applied to invertible matrices for 3 and II, for which P is unique.

2. Compute empirical approximations to u, ¥ and II:

1N
foi==Y X®
=1

P
R
o~ p . .
fi.— % ; v (X@)) v (X(”)T

3. Use eigenvalue decomposition to write S = AAT and II = GGT.

4. Use singular value decomposition to write GTA = USVT with U and V orthogonal
and S diagonal.

5. Select the largest r = min (k, rank (5)) diagonal entries of S and take the corresponding
columns of U and V to obtain U,., S, and V..
_1 _1
6. Return Py = AV,.S, 2 and Pg = GU,.S; ? representing the rank-r projection matrix
P = PAPE in factored form.

The “important directions” we wanted are then given by the columns of P4, which form
a basis for the image of P, or alternatively by the columns of Pg, which form a basis for
the orthogonal complement of the kernel of P. The two are related by P4 o« ¥Pg and
Pg o< IIPy4, where o indicates that the columns are multiples of one another. Which of the
two it makes sense use depends on whether we are interested in the domain or the range of
the projection.

The time complexity of the algorithm can be improved slightly by combining steps|2]and
Instead of constructing X and IT, we may apply the reduced singular value decomposition
directly to the matrices of centered activations and gradients, which saves time if p < n.
Alternatively, we could take A and G to be the centered activations and gradients directly
when p < n. With either of these optimizations, the time complexity of the algorithm is
O (npmin (n,p)), ignoring the cost of computing the activation and gradient samples.

Here is an illustrative PyTorch implementation that works for k < rank (.9):

def get_projection(acts, grads, k):

assert acts.shape == grads.shape

acts = acts - acts.mean(-2, keepdim=True)

A_vecs, A_vals, _ = torch.linalg.svd(acts.mT, full_matrices=False)
G_vecs, G_vals, _ = torch.linalg.svd(grads.mT, full_matrices=False)

A = A_vecs * A_vals.unsqueeze(-2)

G = G_vecs * G_vals.unsqueeze(-2)

U, S, Vh = torch.linalg.svd(G.mT @ A)
U="0U[..., :k]

S = S[..., :k].unsqueeze(-2)

V = Vh.mT[..., :k]

return (A @ (V * S *x (-0.5)), G @ (U * S *x (-0.5)))

The only part of the algorithm that can be numerically unstable is taking the largest
singular values to the power of —%. Typically this is not a problem because k is small
compared to rank (), but it is still a good idea to incorporate error handling for this case,

perhaps using a cutoff relative to the largest singular value.

3 Theoretical properties

3.1 Invariance properties

In addition to not relying on a choice of basis, our method is invariant to linear reparame-
terizations. In other words, if T is any invertible n x n matrix and we define X7 = TX and
frx)=f (Tﬁlx), then applying the method to Xp and fr gives the projection TPT 1,
which is the same projection in the new basis.

To get some more intuition about why these invariance properties are desirable, it is
instructive to contrast our algorithm with the following more conventional approach: (a)
collect activation and gradient samples; (b) take the pointwise product using a particular
choice of basis to obtain attributions; (c) apply dimensionality reduction to the attribu-
tions. In this approach, suppose there are two dimensions with equally large activations,
but equal and opposite gradients. Then the two dimensions will have large but opposite at-
tributions, and so the dimensionality reduction method may think that moving in opposite
directions along these dimensions is an important direction. However, in reality, moving in
this combined direction actually has no effect at all on the output of f, so this is misleading.
Moreover, we could have noticed this by taking a linear reparameterization that chose the
combined direction as a basis vector, since the attribution for that basis vector would have
been zero.

Essentially, our algorithm avoids this pitfall by taking dot products between activations
and gradients, which are invariant to linear reparameterizations, instead of pointwise prod-
ucts, which are not. However, naively applying this to a list of samples just gives a list of dot
products, from which it is unclear how to obtain the important directions. Our algorithm
solves this by effectively taking the dot product between every activation and every gradi-
ent, and applying dimensionality reduction to the result. This sounds infeasible because of
the quadratic dependence on the number of samples, but we can actually do this in linear
time by factorizing the empirical covariance matrices of the activations and gradients.

3.2 Relationship to PCA

The objective of principal component analysis (PCA) is to find an n x n projection matrix
P of rank at most k to minimize

E (X = p) = P(X = p)|’| =t (I = P)= (1 = PT)),

which can be thought of either as the expected reconstruction error (left expression), or
as the total variance unexplained (right expression). Thus PCA can be thought of as the
special case of our algorithm in which IT = I.

In PCA, the optimal projection P satisfies P = PT, i.e., P is an orthogonal projection,
meaning that the image of P and the orthogonal complement of the kernel of P are equal.
This is why PCA only produces one set of directions, whereas our algorithm produces two
sets of directions, one for the image and one for the orthogonal complement of the kernel.

Although this may be counterintuitive, it is necessary in order to produce a projection
that is invariant to linear reparameterizations. Another way to think about this is that
requiring P to be orthogonal would effectively be privileging the standard inner product
on R”. Instead, the P chosen by our method is orthogonal according to an inner product
defined by I, in the sense that that I?PI 7 is an orthogonal projection if IT is invertible.
Dually, ¥ 2PY? is an orthogonal projection if ¥ is invertible.

This property is helpful for understanding how our method behaves when X or IT is
not invertible, meaning that the optimization problem does not have a unique solution. In
this case our method chooses a solution such that P3 and IIP are symmetric matrices.
For example, consider the linear case f(x) = w'x, which implies that IT = ww'. In
this case any rank-1 projection of the form P = ;’V"}"TI satisfies f (u+ P (X —p)) = f(X)

and therefore optimizes our original objective perfectly. Our method chooses the projection

_ Sww'
P = wisw’

that "2 PX? is an orthogonal projection if X is invertible. In other words, our method
chooses an orthogonal projection when 3 = I, and otherwise chooses a solution so as to
remain invariant to linear reparameterizations.

There are also other ways of thinking about our method in terms of orthogonal pro-
jections. Firstly, our method can be thought of as applying an orthogonal projection
on the “inside” of ¥ = AAT. Specifically, even though P is not necessarily orthogonal,
PXPT = AQAT for the orthogonal projection Q := V,.V,T. Secondly, PEXPT can be thought
of as applying an orthogonal projection to X in “precision space”. Specifically, PXPT =
(Q'Z+Q’)+, where T denotes the Moore—Penrose pseudoinverse and Q' := Py (P} Pa) -1 Pl
is the orthogonal projection onto the image of P.

which is the unique solution for which PX¥ is a symmetric matrix, implying

4 Extensions

4.1 Fast approximate version

The time complexity of the algorithm can be improved to O (npk) by using an approximate
algorithm for singular value decomposition that only computes the top k singular values
and vectors, also known as reduced SVD. For this to be possible, we first need to avoid
constructing and decomposing ¥ and II, or even applying singular value decomposition
directly to the matrices of centered activations and gradients. To achieve this, we can skip
steps 2| and [3] of the algorithm and instead and take A and G to be the centered activations
and gradients and directly. More precisely, we can compute fi :=]% P X (1) and take the
ith column of A to be % (X(i) — u) and the ith column of G to be %Vf (X(i)) (in fact,
the constants ip have no effect and can be dropped).

Naively, this actually makes the time complexity of the algorithm worse if p > n, because
GT A is now a large matrix that takes O (np2) time to compute. However, it turns out that
there are approximate algorithms for reduced SVD, such as subspace iteration [Halko et al.l
2011, Algorithm 4.4], that only make use of the matrix by multiplying it or its transpose
by an n x O (k) matrix. Hence we can apply such an algorithm to GT A in factored form in
O (npk) time by first multiplying the matrix by A and then by GT, or by G and then by
AT for the transpose, without ever actually needing to compute GT A.

4.2 Cross-covariance version

Our method can also be thought of as finding an approximation of rank at most k to the
covariance matrix 3. Specifically, if we take =k = PXPT, then GTEW @ is the best
approximation of rank at most k to GTXG.

This motivates a corresponding version for cross-covariance matrices. Given two random
variables X and Y, let

Sy ;:E[(X—ux)(Y—uy)T] and Myy =E |V (X)VF ()],

where g1y is the mean of X and py is the mean of Y. Then, writing Ilxy = GxGY,, we could

ask for an approximation Eg]g, to X xy such that G Eg@,GY is the best approximation of
rank at most k to G} Y xyGy. Such an approximation is given by

=¥ = Syy Gy Uy (87)" ULGL Sxy,

where Ux S2 U; is the singular value decomposition of G} Egg/ Gy, and (5£)+ zeros out all
but the top k singular values of S? and takes the reciprocal of all remaining non-zero singular
values. Note, however, that unlike in the original setup, this approximation depends on the
particular choice of Gx and Gy. A natural choice is to use a factorization of Ilxy based
on its singular value decomposition.

4.3 Hessian-based version

If Vf(X) is small, perhaps because X is close to a local minimum, then we may wish to
approximate Vf (X) s 0 and take a second-order Taylor expansion of f about X instead.
This gives us the objective

E [(5 (X —)" (I~ PT) Hy (X)(I - P)(X ~ u))Q] ,

where Hy is the Hessian (the matrix of second partial derivatives) of f. If we again approx-
imate X and Hy (X) as independent, and additionally approximate this mean square by a
squared mean, then we obtain the approximate objective

tr (1= P)S (- PT)E [$H; (X)])"

If the expected Hessian is positive semi-definite, then we can ignore the square, and we get
exactly the same objective as before, except that IT has been replaced by half the expected
Hessian. If the expected Hessian is negative semi-definite, then we can negate it to reduce
to the positive semi-definite case.

This gives us an alternative method if we are able to obtain a positive semi-definite
estimate of the expected Hessian or its negation. One simple way to do this is to take the
absolute value of its eigenvalues, which has the effect of changing the minimization objective
from the squared difference of two squared Frobenius norms to the sum of the squared norms.
Note that the two methods are closely related, since the expected outer product of the
gradient can be thought of as an approximation to (a multiple of) the expected Hessian, as
in the derivation of the Gauss—Newton algorithm or in properties of the Fisher information
matrix.

4.4 Vector-valued version

It is easy to generalize our method to the case where f : R® — R™ is vector-valued. We
take the minimization objective to be

E[If (X) = £+ P(X = w)I?],

which is just the sum of the minimization objectives for each scalar-valued component of f.
The method proceeds in exactly the same way, except that now we have

m- 35 [vs, (09,

j=1

or, more succinctly, IT = E [Jf (x)" Jy (X)}, where Jy is the Jacobian of f.

References

N. Halko, P.-G. Martinsson, and J. A. Tropp. Finding structure with randomness: Prob-
abilistic algorithms for constructing approximate matrix decompositions. SIAM review,
53(2):217-288, 2011.

J. Hilton, N. Cammarata, S. Carter, G. Goh, and C. Olah. Understanding RL
vision. Distill, 2020. doi: 10.23915/distill.00029. |https://distill.pub/2020/
understanding-rl-visiom.

C. Olah, A. Satyanarayan, I. Johnson, S. Carter, L. Schubert, K. Ye, and A. Mordvintsev.
The building blocks of interpretability. Distill, 2018. doi: 10.23915/distill.00010. https:
//distill.pub/2018/building-blocks.

M. Sundararajan, A. Taly, and Q. Yan. Axiomatic attribution for deep networks. In Inter-
national conference on machine learning, pages 3319-3328. PMLR, 2017.

https://distill.pub/2020/understanding-rl-vision
https://distill.pub/2020/understanding-rl-vision
https://distill.pub/2018/building-blocks
https://distill.pub/2018/building-blocks

	Derivation of the method
	Practical algorithm
	Theoretical properties
	Invariance properties
	Relationship to PCA

	Extensions
	Fast approximate version
	Cross-covariance version
	Hessian-based version
	Vector-valued version

