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We’d like to train autoregressive models using RL. But we have a choice: we can think of either com-
pletions or tokens as actions. This gives rise to two different policy gradient estimators. Here we’ll analyze
these estimators, and put those that use GAE [Schulman et al., 2015] into a unified perspective, using an
advantage estimator we’ll call Double-GAE.

1 Notation and terminology

Let’s call completions outer actions and denote them using boldface letters, and let’s call tokens inner actions
and denote them using lightface letters with two indices, a completion index and a token index. Likewise
for states, rewards and so on. We ignore the distinction between states and observations, and so states are
prompts. We write states and actions next to one another to indicate concatenation. Thus

at = at0at1 . . . at(nt−1),

where nt is the length of the tth completion, and

stu = stat0at1 . . . at(u−1)

for 0 ≤ u ≤ nt − 1. We assume that the outer and inner rewards are related by

rt = rt0 + rt1 + · · ·+ rt(nt−1),

and we refer to rtu for u < nt − 1 as inner-only rewards.

2 Double-GAE

Suppose our inner policy is given by an autoregressive model πθ (atu | stu). Then the outer policy is given
by

πθ (at | st) = πθ (at0 | st0)πθ (at1 | st1) . . . πθ
(
at(nt−1) | st(nt−1)

)
.

It follows that the outer policy gradient estimator

Êt
[
∇θ logπθ (at | st) Ât

]
= Êt

[
nt−1∑
u=0

∇θ log πθ (atu | stu) Ât

]
= Êt [nt] Êtu

[
∇θ log πθ (atu | stu) Ât

]
,

where Ât is the outer advantage estimator. Hence the outer policy gradient estimator can be viewed (up
to a global constant) as a special case of the inner policy gradient estimator by using the inner advantage

estimator Âtu = Ât for all u. So there is no loss of generality by considering only the inner policy gradient
estimator, as long as we allow non-standard inner advantage estimators.

Two natural choices for the inner advantage estimator are standard GAE, which we will call inner GAE,
and the estimator obtained by using GAE with the outer policy gradient estimator, which we will call outer
GAE. We would like to view both of these as special cases of a more general advantage estimator. To do this,
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we introduce Double-GAE (γin, γout, λin, λout), which is parameterized by inner and outer discount rates γin
and γout and bootstrapping parameters λin and λout. First we define the one-step backups

δVtu :=

{
−V (stu) + rtu + γinV

(
st(u+1)

)
, u < nt − 1,

−V (stu) + rtu + γoutγ
−(nt−1)
in V

(
s(t+1)0

)
, u = nt − 1.

Using these, we define the Double-GAE advantage estimator by

Âtu :=

∞∑
k=0

nt+k−1∑
v=∗

(γoutλout)
k

(γinλin)
v−u

δV(t+k)v, where ∗ :=

{
u, k = 0

0, k > 0.

To recover inner GAE, we must assume that nt = n is constant. If moreover γout = γnin and λout = λnin,

then δVtu reduces to the standard inner one-step backup, and Âtu reduces to the standard inner GAE estimator.
Hence Double-GAE (γin, γ

n
in, λin, λ

n
in) is equivalent to inner GAE (γin, λin).

To recover outer GAE, we must assume both that there are no inner-only rewards, and that we only
have an outer value function V, from which we obtain our inner value function by taking V (stu) = V (st).
If moreover γin = λin = 1, then δVtu = 0 for u < nt − 1 while δVt(nt−1) reduces to the standard outer

one-step backup, and Âtu becomes independent of u, reducing to the standard outer GAE estimator for
step t. It follows that inner Double-GAE (1, γout, 1, λout) is equivalent (up to a global constant) to outer
GAE (γout, λout).

We conclude from this that Double-GAE is general enough to describe most inner advantage estimators
we are likely to care about, while keeping the number of hyperparameters minimal. Even though in practice
nt may not be constant, and we may consider it unhelpful to use a value function that can only differentiate
between outer states, we have hopefully captured the most important features of any useful estimators.

3 Simplifying Double-GAE

We can split the double sum in the definition of the Double-GAE advantage estimator into a single sum and
a double sum whose inner terms do not depend on u:

Âtu =

nt−1−u∑
l=0

(γinλin)
l
δVt(u+l) + (γinλin)

−u
∞∑
k=1

(γoutλout)
k
nt+k−1∑
v=0

(γinλin)
v
δV(t+k)v

= Âcomp
tu + (γinλin)

−u
∞∑
k=1

(γoutλout)
k
Âcomp

(t+k)0,

where Âcomp
tu is defined by

Âcomp
tu :=

nt−1−u∑
l=0

(γinλin)
l
δVt(u+l).

Âcomp
tu is similar to the standard GAE estimator truncated after the end of the current completion, the only

difference being the presence of γout in δVt(nt−1).

If γin = λin = 1, then Âcomp
tu simplifies to

Âcomp
tu = −V (stu) + rtu + rt(u+1) + · · ·+ rt(nt−1) + γoutV

(
s(t+1)0

)
.

In particular, Âcomp
t0 is simply the standard outer one-step backup,

Âcomp
t0 = δVt := −V (st) + rt + γoutV (st+1) .

Hence Âtu simplifies to

Âtu = −
[
−V (st0) + rt0 + rt1 + · · ·+ rt(u−1) + V (stu)

]
+

∞∑
k=0

(γoutλout)
k
δVt+k.

This is almost identical to standard outer GAE, differing only by the u-step backup correction term in square
brackets.
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4 Choice of hyperparameters

It would be perverse for γnt

in to be much smaller than γout, since that would involve putting more weight on
rewards further into the future. Furthermore, if completions are not particularly long, then taking γin to be
slightly less than 1 will not provide much variance reduction anyway. This suggests that taking γin = 1 is a
safe choice.

One could argue similarly for taking λin = 1, which would allow us to use the simplified calculation.
However, λ is typically much lower than γ, so this may be a poor choice when completions are longer than
a few tens of tokens, say.

It is hard to say much more than this without empirical data, but our overall recommendations are:

• For completions of just a few tokens, take γin = λin = 1 (enabling the simplified calculation), and use
reasonable defaults for γout and λout such as γout = 0.999, λout = 0.95 or a little lower.

• For completions much longer than a few tens of tokens, consider significantly lowering λout and taking

λin = λ
1/n
out , where n is the number of tokens in a typical completion. It may also help to lower γout.

• For completions of an intermediate length, the first option might work fine, perhaps with lowering λout,
but the second option could be worth trying.
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