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Abstract
We analyze the Kullback–Leibler divergence from a probability distribution to the

maximum of n i.i.d. samples from that distribution. When the distribution is absolutely
continuous, then the KL divergence is exactly logn − n−1

n
. When the distribution

is discrete with finite support and the maximum probability of any single value is
o
(
n− 3

2

)
, then the KL divergence is at most logn − n−1

n
and differs from this by an

error term that tends to zero. We conjecture based on numerical evidence that this
can be improved to requiring the maximum probability to be o

(
n−1). In practice, as

long as it is rare for n i.i.d. samples to contain a repetition, it is reasonable to treat
the logn− n−1

n
formula as exact for all practical purposes.

1 Introduction
In reinforcement learning from human feedback, a reward model is used to assign a numerical
score to outcomes taken from from some sample space S. Given some distribution P over S
from which we can sample, we would like to obtain a sample with high score. The simplest
way to achieve this is to take n i.i.d. samples from P and choose the one with the highest
score. This is known as best-of-n sampling, rejection sampling or reranking.

It is natural to ask about the Kullback–Leibler divergence from P to the best-of-n distri-
bution, which in some sense measures the “amount of optimization” that has been performed.
One might naively guess that this KL divergence is log n, since best-of-n sampling is similar
to taking the top 1

n of the distribution. In fact, if the distribution over scores is absolutely
continuous, then the KL divergence is exactly log n− n−1

n . This somewhat surprising result
appears without proof in Stiennon et al. [2020, Appendix G.3] and later in Gao et al. [2023,
Section 2]. In this work we will explain this and a number of other related results.

• In Section 2, we observe that the KL divergence depends only on the distribution
over scores under P up to a strictly increasing monotonic transformation, assuming
for simplicity that there are no ties. This lets us reduce best-of-n to max-of-n, and
explains why the KL divergence is the same for all absolutely continuous distributions.

• In Section 3, we show directly that if P is absolutely continuous, then the KL diver-
gence from P to the max-of-n distribution is exactly log n− n−1

n .

• In Section 4, we study the case in which P is discrete with finite support. In this case
the KL divergence is no longer exactly log n − n−1

n , but is instead slightly less than
this by some amount ε ≥ 0 that depends on P and n. We prove that

ε < npmax +
n3p2max

4
,
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where pmax is the maximum probability of any single value under P . This implies that
if pmax = o

(
n− 3

2

)
then ε → 0. In fact, numerical evidence leads us to conjecture the

stronger inequality
ε <

npmax

4
,

which would imply that if pmax = o
(
n−1

)
then ε → 0. This would in turn imply that

if n i.i.d. samples contain a repetition with probability tending to zero, then ε → 0.

In a typical language modeling setup with multi-sentence responses, P is discrete with
finite support, but n ≤ 103 and pmax � 10−6. In this case the error term ε � 1.25× 10−3

regardless of whether our conjecture holds, and so it is reasonable to treat the log n− n−1
n

formula as exact for all practical purposes.

2 Monotonic invariance
Recall that if P and P ′ are discrete probability distributions over the sample space S, then
the Kullback–Leiber divergence or KL divergence from P to P ′ is defined as

DKL (P ′ ‖ P ) =
∑
x∈S

P ′ (x) log

(
P ′ (x)

P (x)

)
.

Suppose that P ′ is the best-of-n distribution according to some scoring function, and
assume for simplicity that no two distinct samples have the same score (otherwise the KL
divergence depends on how such ties are broken). It is clear from the above definition
that this KL divergence does not depend on the sample space S itself, nor on the exact
values of the scores, but only on the probability of the highest score, the probability of the
second-highest score, and so on.

One consequence of this is that we may assume without loss of generality that the sample
space is R and that the scoring function is the identity function. In this case, best-of-n
sampling reduces to taking the maximum of n i.i.d. samples.

Definition. Let P be a probability distribution over R and n ∈ N. The max-of-n-from-P
distribution, denoted P(n), is the probability distribution of

max (X1, . . . , Xn) for X1, . . . , Xn ∼i.i.d. P.

This maximum is also sometimes known as the largest order statistic.

Another consequence of this is that if P is instead an absolutely continuous probability
distribution over R, then the KL divergence DKL

(
P(n) ‖ P

)
does not depend on the choice

of distribution for P . Intuitively, this is because P may be written as a limit of discrete
uniform distributions, which all lead to the same KL divergence regardless of how they are
spaced. More formally, the the change-of-variables formula for probability density functions
can be used to show that applying a strictly increasing monotonic function to P leaves the
KL divergence unchanged.
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3 The continuous case
We now explain why DKL

(
P(n) ‖ P

)
is exactly log n− n−1

n when P is absolutely continuous.
The simplest way to see this is to use the fact that this KL divergence does not depend on the
choice of distribution for P , as explained in the previous section. It is then a straightforward
calculation to check the formula in the special case that P has a uniform distribution on
the interval [0, 1].

For the sake of completeness, we give a careful, self-contained proof. This can be thought
of as applying a change of variables to reduce to the case of the uniform distribution on
[0, 1]. The proof will also be useful for extending the result to the discrete case in the next
section.
Proposition 1. Let P be an absolutely continuous probability distribution and n ∈ N. Then
the KL divergence from P to the max-of-n-from-P distribution,

DKL
(
P(n) ‖ P

)
= log n− n− 1

n
.

Proof. Let f and F be the probability density function of P and the cumulative distribution
function of P respectively, and let f(n) and F(n) be the probability density function of P(n)

and the cumulative distribution function of P(n) respectively.
Given X1, . . . , Xn ∼i.i.d. P and x ∈ R,

P (max (X1, . . . , Xn) ≤ x) = P (X1 ≤ x and . . . and Xn ≤ x)

=

n∏
i=1

P (Xi ≤ x) = P (X1 ≤ x)
n
,

and so F(n) (x) = F (x)
n. Differentiating, we obtain f(n) (x) = nF (x)

n−1
f (x).

Hence

DKL
(
P(n) ‖ P

)
=

∫ ∞

−∞
f(n) (x) log

(
f(n) (x)

f (x)

)
dx

=

∫ ∞

−∞
f(n) (x) log

(
nF (x)

n−1
)
dx

= log n+ (n− 1)

∫ ∞

−∞
f(n) (x) log (F (x)) dx

= log n+ (n− 1)

([
F(n) (x) log (F (x))

]∞
−∞ −

∫ ∞

−∞
F(n) (x)

1

F (x)
f (x) dx

)
= log n+ (n− 1)

(
[F (x)

n
log (F (x))]

∞
−∞ −

∫ ∞

−∞
F (x)

n−1
f (x) dx

)
= log n− (n− 1)

∫ 1

0

un−1du

= log n− n− 1

n
.

4 The discrete case
If P is a discrete distribution with finite support, then the KL divergence DKL

(
P(n) ‖ P

)
is no longer exactly log n− n−1

n . Instead, it is less than or equal to this, but the difference
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is small, as shown by the following result.

Theorem 1. Let P be a discrete distribution over R with finite support and n ∈ N. Then
the KL divergence from P to the max-of-n-from-P distribution,

DKL
(
P(n) ‖ P

)
= log n− n− 1

n
− ε for some 0 ≤ ε < npmax +

n3p2max
4

,

where pmax is the maximum probability of any single value under P .

The proof of Theorem 1 follows the same outline as the proof of Proposition 1, but makes
discretized approximations to the integrals. All of the technical difficulty involves tracking
and bounding the discretization error. The full proof can be found in Appendix A.

In order to better understand how the error term ε in this result behaves empirically,
we calculated it numerically for each value of n from 2 to 64, for different discrete uniform
distributions P . The results of these calculations are shown in Figure 1. Based on this
numerical evidence, we make the following conjecture.

Conjecture. The inequality in Theorem 1 can be improved to 0 ≤ ε <
npmax

4
.

It is straightforward to show that the probability that n i.i.d. samples from P contain
a repetition is at least 1 − e−npmax (1 + npmaxe

pmax). Hence if this conjecture holds and
ε ≥ 1, say, then the probability of a repetition is greater than 1− e−4 (1 + 4e) ≈ 0.78. This
provides a practical way to verify that ε is small when performing best-of-n sampling, by
checking that it is rare for the n i.i.d. samples to contain a repetition.
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Figure 1: The error term ε =
(
log n− n−1

n

)
−DKL

(
P(n) ‖ P

)
as a function of n and p when

P is the discrete uniform distribution that takes on 1
p values with probability p each. Each

line shows how ε
np varies with 1

p for fixed n. The trend of the upper frontier suggests that
ε
np < 0.17 for all n and p, motivating our conjecture that ε < npmax

4 for all P .

5



A Proof for the discrete case
Proof of Theorem 1. The proof follows the same outline as the proof of Proposition 1, but
makes discretized approximations to the integrals. In order to bound the discretization
error, we use the following inequalities for x, δ > 0:

(x+ δ)
n − xn ≤ nδ (x+ δ)

n−1 (1)

(x+ δ)
n − xn ≥ nδ

(
x+

δ

2

)n−1

≥ nδxn−1 (2)

(x+ δ)
n − xn ≥ nδxn−1 +

n (n− 1)

2
δ2xn−2 (3)

(x+ δ)
n − xn ≥ nδ (x+ δ)

n−1 − n (n− 1)

2
δ2 (x+ δ)

n−2 (4)

log (x+ δ)− log (x) ≤ δ

x
(5)

log (x+ δ)− log (x) ≤ δ

x+ δ
+

δ2

2x2
(6)

These all follow from Taylor’s theorem with Lagrange’s form of the remainder, or by Jensen’s
inequality for (2).

Let k be the number of points in the support of P . For i = 1, . . . , k, let pi be the
probability under P of the ith point, ordered from smallest to largest, and let p(n)i be the
probability under P(n) of the ith point, ordered from smallest to largest.

As in Proposition 1, given X1, . . . , Xn ∼i.i.d. P and x ∈ R, we have P (max (X1, . . . , Xn) ≤ x) =
P (X1 ≤ x)

n, and so

p(n)i = (p1 + · · ·+ pi)
n − (p1 + · · ·+ pi−1)

n

for i = 1, . . . , k.
We first prove the lower bound for ε. We have

DKL
(
P(n) ‖ P

)
=

k∑
i=1

p(n)i log

(
(p1 + · · ·+ pi)

n − (p1 + · · ·+ pi−1)
n

pi

)

≤
k∑

i=1

p(n)i log

(
npi (p1 + · · ·+ pi)

n−1

pi

)
by (1)

= log n+ (n− 1)

k∑
i=1

p(n)i log (p1 + · · ·+ pi)

= log n+ (n− 1)

k∑
i=1

((p1 + · · ·+ pi)
n − (p1 + · · ·+ pi−1)

n
) log (p1 + · · ·+ pi)

= log n+ (n− 1)

(
(p1 + · · ·+ pk)

n
log (p1 + · · ·+ pk)

−
k−1∑
i=1

(p1 + · · ·+ pi)
n
(log (p1 + · · ·+ pi+1)− log (p1 + · · ·+ pi))

)
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≤ log n− (n− 1)

k−1∑
i=1

(p1 + · · ·+ pi)
n pi+1

p1 + · · ·+ pi
by (5)

= log n− (n− 1)

k−1∑
i=1

pi+1 (p1 + · · ·+ pi)
n−1

≤ log n− (n− 1)

k−1∑
i=1

1

n
((p1 + · · ·+ pi+1)

n − (p1 + · · ·+ pi)
n
) by (2)

= log n− n− 1

n
((p1 + · · ·+ pk)

n − pn1 )

≤ log n− n− 1

n
,

as required.
The proof of the upper bound for ε is similar but requires more care. We have

DKL
(
P(n) ‖ P

)
=

k∑
i=1

p(n)i log

(
(p1 + · · ·+ pi)

n − (p1 + · · ·+ pi−1)
n

pi

)

≥
k∑

i=1

p(n)i log

(
npi

(
p1 + · · ·+ pi−1 +

pi

2

)n−1

pi

)
by (2)

= log n+ (n− 1)

k∑
i=1

p(n)i log
(
p1 + · · ·+ pi−1 +

pi
2

)
= log n+ (n− 1)

k∑
i=1

((p1 + · · ·+ pi)
n − (p1 + · · ·+ pi−1)

n
) log

(
p1 + · · ·+ pi−1 +

pi
2

)
= log n+ (n− 1)

(
(p1 + · · ·+ pk)

n
log
(
p1 + · · ·+ pk−1 +

pk
2

)
−

k−1∑
i=1

(p1 + · · ·+ pi)
n
(
log
(
p1 + · · ·+ pi +

pi+1

2

)
− log

(
p1 + · · ·+ pi−1 +

pi
2

)))

= log n− (n− 1)

(
k−1∑
i=1

(p1 + · · ·+ pi)
n
(
log
(
p1 + · · ·+ pi +

pi+1

2

)
− log

(
p1 + · · ·+ pi−1 +

pi
2

))
+ ε1

)

where

ε1 = − (p1 + · · ·+ pk)
n
log
(
p1 + · · ·+ pk−1 +

pk
2

)
= − log

(
1− pk

2

)
≤ pk

2
+

p2k
4

≤ pmax

2
+

p2max
4

.
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Now,

k−1∑
i=1

(p1 + · · ·+ pi)
n
(
log
(
p1 + · · ·+ pi +

pi+1

2

)
− log

(
p1 + · · ·+ pi−1 +

pi
2

))
=

k−1∑
i=1

(p1 + · · ·+ pi)
n
(
log
(
p1 + · · ·+ pi +

pi+1

2

)
− log (p1 + · · ·+ pi)

+ log (p1 + · · ·+ pi)− log
(
p1 + · · ·+ pi−1 +

pi
2

))
≤

k−1∑
i=1

(p1 + · · ·+ pi)
n

(
pi+1

2

p1 + · · ·+ pi
+

pi

2

p1 + · · ·+ pi
+

(
pi

2

)2
2
(
p1 + · · ·+ pi−1 +

pi

2

)2
)

by (5) and (6)

=

(
1

2

k−1∑
i=1

(pi+1 + pi) (p1 + · · ·+ pi)
n−1

)
+ ε2

where

ε2 =

k−1∑
i=1

(p1 + · · ·+ pi)
n

(
pi

2

)2
2
(
p1 + · · ·+ pi−1 +

pi

2

)2
≤

k−1∑
i=1

(p1 + · · ·+ pi)
n

(
pi

2

)2
2
(
p1

2 + · · ·+ pi−1

2 + pi

2

)2
=

k−1∑
i=1

(p1 + · · ·+ pi)
n−2 p2i

2

≤
k−1∑
i=1

pipmax

2

≤ pmax

2
.

Finally,

1

2

k−1∑
i=1

(pi+1 + pi) (p1 + · · ·+ pi)
n−1

≤ 1

2

k−1∑
i=1

(
1

n
(p1 + · · ·+ pi+1)

n − 1

n
(p1 + · · ·+ pi)

n − n− 1

2
p2i+1 (p1 + · · ·+ pi)

n−2

+
1

n
(p1 + · · ·+ pi)

n − 1

n
(p1 + · · ·+ pi−1)

n
+

n− 1

2
p2i (p1 + · · ·+ pi)

n−2

)
by (3) and (4)

=
1

2n
((p1 + · · ·+ pk)

n − pn1 + (p1 + · · ·+ pk−1)
n
) +

n− 1

4

k−1∑
i=1

(
p2i − p2i+1

)
(p1 + · · ·+ pi)

n−2

≤ 1

n
+ ε3
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where

ε3 =
n− 1

4

k−1∑
i=1

(
p2i − p2i+1

)
(p1 + · · ·+ pi)

n−2

=
n− 1

4

(
p21p

n−2
1 − p2k (p1 + · · ·+ pk−1)

n−2
+

k−1∑
i=2

p2i

(
(p1 + · · ·+ pi)

n−2 − (p1 + · · ·+ pi−1)
n−2
))

≤ n− 1

4

(
p2max +

k−1∑
i=2

(n− 2) p3i (p1 + · · ·+ pi)
n−3

)
by (1)

≤ n− 1

4

(
p2max + (n− 2)

k−1∑
i=2

pip
2
max

)

≤ (n− 1)
2
p2max

4
.

Piecing everything together, we obtain DKL
(
P(n) ‖ P

)
= log n− n− 1

n
− ε with

ε ≤ (n− 1) (ε1 + ε2 + ε3)

≤ (n− 1)

((
pmax

2
+

p2max
4

)
+

pmax

2
+

(n− 1)
2
p2max

4

)

= (n− 1)

(
pmax +

(
n2 − 2n+ 2

)
p2max

4

)

< npmax +
n3p2max

4
.
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