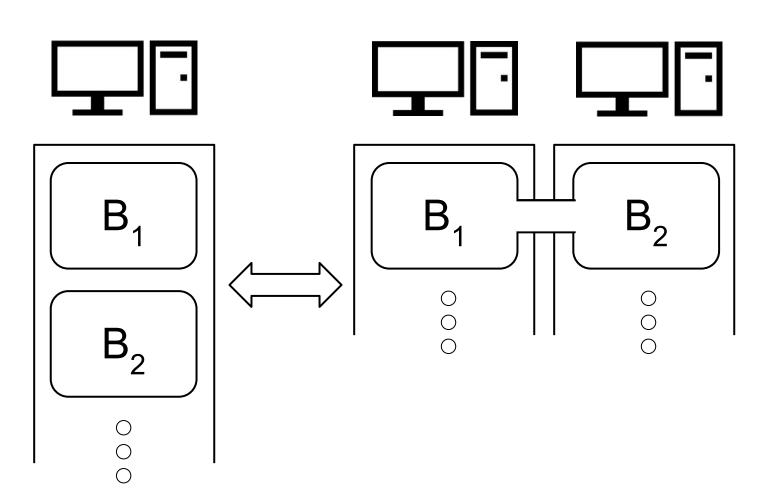


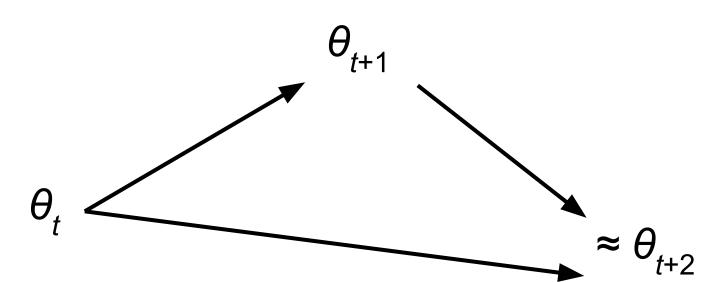
Batch size-invariance

This means that changes to the batch size can be compensated for by changes to other hyperparameters, such as the learning rate.



SGD is batch size-invariant at small batch sizes

two steps, batch size *n*, learning rate α ≈ one step, batch size 2n, learning rate 2α



See Mandt et al. [2017] for a thorough explanation.

PPO has two batch sizes

optimization batch size = per gradient step iteration batch size = per alternation between rollout and optimization

We consider simultaneously changing both.

Batch size-invariance for policy optimization Jacob Hilton, Karl Cobbe, John Schulman

Decoupled PPO objective

PPO [Schulman et al., 2017] uses π_{old} in two ways, which can be decoupled:

- Importance sampling must use behavior policy
- KL penalty can use another "proximal" policy

$$\begin{aligned} L_{\text{decoupled}}^{\text{KLPEN}}\left(\theta\right) &:= \hat{\mathbb{E}}_{t} \left[\frac{\pi_{\theta} \left(a_{t} \mid s_{t}\right)}{\pi_{\theta_{\text{behav}}} \left(a_{t} \mid s_{t}\right)} \hat{A}_{t} \right. \\ &\left. -\beta \operatorname{KL} \left[\pi_{\theta_{\text{prox}}} \left(\cdot \mid s_{t} \right), \pi_{\theta} \left(\cdot \mid s_{t} \right) \right] \end{aligned}$$

PPO is not iteration batch-size invariant because the iteration batch size determines the age of the proximal policy used as the KL penalty target.

PPO-EWMA

This is the same as PPO, but using the decoupled objective with $\pi_{prox} = EWMA(\pi)$ (exponentially-weighted moving average of weights).

To make PPO-EWMA iteration batch size-invariant, adjust the decay rate of the EWMA when changing the iteration batch size to keep the age of the proximal policy constant.

References

K. Cobbe, J. Hilton, O. Klimov, and J. Schulman. Phasic policy gradient. arXiv:2009.04416, 2020.

S. Mandt, M. D. Hoffman, and D. M. Blei. Stochastic gradient descent as approximate Bayesian inference. *arXiv:1704.04289*, 2017.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization algorithms. arXiv:1707.06347, 2017.

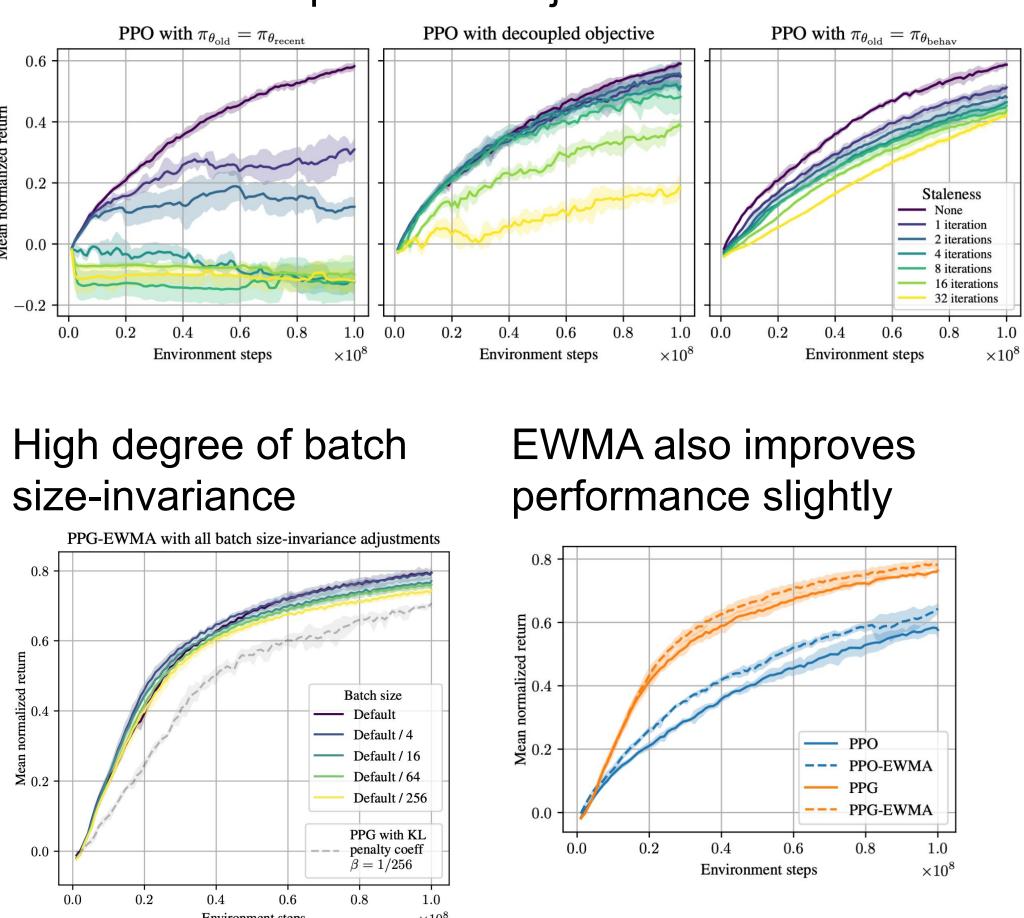
Need to control *how fast* the policy changes, but do not need to keep the policy that close to the behavior policy specifically. So PPO is more of a natural gradient method than a trust region method.

When scaling computational resources, either keep iteration batch size constant, or use PPO-EWMA.

NeurIPS 2022

Experiments

Staleness experiment (with buffered rollout data) validates decoupled PPO objective



Experiments use PPO and PPG [Cobbe et al., 2020] on Procgen Benchmark.

Takeaways